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(57) ABSTRACT

A traffic classifier has a plurality of binary classifiers, each
associated with one of a plurality of calibrators. Each calibra-
tor trained to translate an output score of the associated binary
classifier into an estimated class probability value using a
fitted logistic curve, each estimated class probability value
indicating a probability that the packet flow on which the
output score is based belongs to the traffic class associated
with the binary classifier associated with the calibrator. The
classifier training system configured to generate a training
data based on network information gained using flow and
packet sampling methods. In some embodiments, the classi-
fier training system configured to generate reduced training
data sets, one for each traffic class, reducing the training data
related to traffic not associated with the traffic class.
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SCALABLE TRAFFIC CLASSIFIER AND
CLASSIFIER TRAINING SYSTEM

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/539,430, filed Aug. 11, 2009, which is cur-
rently allowed, and is herein incorporated by reference in its
entirety.

BACKGROUND

1. Field of the Disclosure

The present disclosure is directed generally to classifica-
tion of traffic in a packet network.

2. Description of the Related Art

Internet Protocol (IP) networks today carry a mixture of
traffic for a diverse range of applications. The ability to accu-
rately classify this traffic according to the types of applica-
tions that generate the traffic is vital to the workings of a wide
swathe of I[P network management functions including traffic
engineering, capacity planning, traffic policing, traffic priori-
tization, monitoring service level agreements (SLAs) and
security. For example, traffic classification is an essential first
step for developing application workload characterizations
and traffic models that in turn serve as inputs to efforts to
optimize the network design, plan for future growth and
adjust to changing trends in application usage

Given the importance of the traffic classification problem,
much effort has been devoted to develop traffic classifier
systems and methods. The simplest classification method is to
use port numbers, mapping the TCP or UDP server port of a
connection to an application using the IANA (Internet
Assigned Numbers Authority) list of registered or well known
ports. Such fixed port based classification is known to be
inherently unreliable for various reasons, all tied to the fact
that an application has full discretion to determine its server
port. Reasons why applications use non-standard ports
include: (i) traversing firewalls, circumventing operating sys-
tem restrictions and evading detection, (ii) dynamic alloca-
tion of sever ports such as used by FTP for the data transfer,
(iii) avoiding interference when the same standard port is
used by multiple applications. For example, a SSH (secure
shell) protocol, which runs on TCP port 33 is used both for
interactive operations and for data downloads by the SCP
(secure copy) file transfer protocol. For another example,
many non-web applications are known to use ports 80, 8000,
and 8080 (normally assumed to be “web ports™) for crossing
firewalls which often have these ports open. These limitations
have fueled efforts to devise alternative approaches that use
specific features present in the application generated traffic to
guide the classification.

Another approach to traffic classification develops content-
based application signatures based on deep packet inspection
(DPI) of application layer (layer 7) features, looking deeper
into a packet than just the network and transport layer head-
ers. While very accurate, the approach necessitates the use of
traffic capture devices that can scale for use with high speed
links. This is an expensive proposition which limits the ability
to deploy it on a wide scale. Using application layer (layer 7)
signatures is also expensive in terms of the computational
resources needed to process large data volumes, (e.g., signa-
tures) requiring evaluation of regular expressions and vari-
able offset signatures. Furthermore, specific policy environ-
ments may limit how application layer (layer 7) information
is collected or utilized. Lastly, this approach does not work for
encrypted content—(e.g., all the application-level informa-
tion is hidden by IP-level encryption techniques used by
security protocols like IPSEC).
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A different approach to traffic classification has been to use
traffic classifiers with flow-level statistic inputs to identify
network applications associated with particular traffic flows.
Classifiers in general are software modules that use algo-
rithms to provide a classification of an object based on an
input set of features describing the object. A flow-based traffic
classifier provides a classification of a traffic flow based on
flow level statistics of a traffic flow. The use of flow-based
traffic classifiers overcomes many of the problems of appli-
cation layer (layer 7) approaches. Flow-based traffic classifi-
ers are scalable. As flow reporting has been widely deployed
in commercial routers, obtaining flow reports network wide
does not put extra requirements on deployment or require
development of new router features. In fact, many network
providers already perform flow records collection as a daily
routine operation. Furthermore, this approach also avoids the
potential limitations of port and application layer approaches
mentioned above.

Classifiers must be generated or trained with a set of train-
ing data (i.e., inputs for which the class is known) before they
can accurately classify live data (i.e., inputs for which the
class is not known). Two machine learning algorithms that
may be used for classifier training are SVM and Adaboost.
Successtul operation of SVM and Adaboost relies on two
characteristics. First, uniform convergence bounds predict
that the classification error observed on the test data only
diverges from the training error within predictable bounds
that depend on the number of examples, not on the number of
features. The key underlying assumption is that test examples
are “independent identically distributed (IID).” That is, the
test examples are picked randomly from the same distribution
as the training data. Second, training is a convex optimization
problem with a guaranteed convergence in a time that is super
linear in the number of training examples. These characteris-
tics encourage a “black box™ approach: one collects every
possible feature for a representative set of training examples
and trains an off-the-shelf classifier. Prior work on applica-
tion classification using machine learning has focused exclu-
sively on such a black box approach. In reality, many of the
above assumptions do not hold for network traffic and a
straightforward “black box™ application of traditional
machine learning is not well-suited to the IP traffic classifi-
cation problem and can fail spectacularly. Even though the
traffic classification problem follows the definition of a typi-
cal multi-class classification problem, there are many unique
challenges.

A first challenge for traffic classification is that the 11D
assumption does not hold. The composition of applications
and their relative traffic contributions have natural spatial and
temporal variations. Even at the same monitoring point, the
amount of traffic contributed by an application can vary over
time (e.g. different applications can have different time of day
or time of week effects) and hence the training and test sets
can have different distributions.

A second challenge for traffic classification is that typical
networks have an extremely large amount of traffic. How to
make the most use of the potential large training data set is a
key issue, since most machine learning algorithms will expe-
rience scalability problems.

A third challenge for traffic classification is to achieve
accuracy and stability. To be applicable to high-speed net-
works, a classifier should exhibit high classification accuracy,
and in addition, must be fast enough to keep up with high
traffic volumes.

A fourth challenge for traffic classification is to provide
versatility. Under different scenarios, there will be different
requirements for traffic classification. For example, for the
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purpose of Internet accounting and billing, it is desirable to
achieve high byte accuracy instead of high flow accuracy. As
another example, in application identification and anomaly
detection and prevention, a fast detection method is preferred
where a decision is needed to be made before the entire flow
is observed.

Several approaches have been proposed for traffic classifi-
cation using machine learning with flow statistics using a
Naive Bayes classifier. Bonfiglio et al. develop two
approaches based on Naive Bayesian classifiers and Pear-
son’s Chi-Square tests to detect Skype traffic. They use flow
level statistics such as the packet length and arrival rate as
features to detect this traffic. Bernaille et al. propose an
approach using unsupervised learning of application classes
by clustering of flow features and a derivation of heuristics for
packet based identification. Similarly, Crotti et al. use packet
sizes, inter-arrival times, and arrival order of the first N pack-
ets as features for their classifier. This approach constructs
protocol fingerprints, which are histograms of the observed
variables for a flow. Erman et al. propose a semi-supervised
machine learning approach based on clustering flow statis-
tics. In addition to machine learning based approaches, Kara-
giannis et al. propose a classification approach based on using
behavioral analysis of the communication patterns of hosts.

However, these approaches do not point to a robust and
scalable solution that addresses many of the practical chal-
lenges that need to be solved before such machine learning
based classification can be deployed in commercial networks.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a block diagram of a traffic classifier.

FIG. 2 is a block diagram showing a classifier training
system.

FIG. 3 is a block diagram showing a reduced data classifier
training system.

FIG. 4 is a flow chart showing a method for training a
calibrator.

FIGS. 5A-5C are a group of reliability diagrams.

FIG. 6 is a flow chart showing a method for classifying
traffic in the network.

FIG. 7 is a flow diagram showing a method for flow and
packet sampling.

FIG. 8 is a flow diagram showing a method for training a
traffic classifier.

FIG. 9 is a flow chart showing a method of training using
reduced training data sets.

DETAILED DESCRIPTION

Embodiments of a robust and scalable traffic classifier and
methods for training such traffic classifiers are described
herein. In the Figures, various objects are identified with
reference numbers. If there are multiple instances of the same
object in a figure, they will be referred to by the same refer-
ence number but with a different suffix number appended. In
the following discussion, if a reference is made to a reference
number that identifies multiple objects but without a suffix
number appended, and then the reference is to all the multiple
objects as a group.

Traffic Classifier

FIG. 1 is a block diagram of a traffic classifier 100. The
traffic classifier 100 is coupled with a flow record collector
112 and a network 102. The network 102 carries traffic flows
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that are generated by applications (not shown). The traffic
classifier 100 is configured to classify traffic flows in the
network 100 as belonging to one of a plurality of classes. Each
class represents a type of application that may generate traffic.
The preferred embodiment uses the set of classes shown in
Table 2, but other embodiments may use different sets of
classes. The components of the traffic classifier 100 are
briefly described next, but details of the operation of the
traffic classifier 100 will be discussed later herein.

The network 102 comprises a plurality of routers (not
shown) configured to route packets according to Internet Pro-
tocol (IP). The routers are configured to detect flows of pack-
ets and generate flow records.

The flow record collector 112 is configured to store and
manage flow records received from the network 102. The flow
record collector 112 is configured to generate feature sets
based on measurements of packet flows. Typically the flow
record collector 112 extracts measurements of the packet
flows from the flow records.

The traffic classifier 100 is configured to generate predic-
tions of the traffic class for packet flows in the network 102
based on feature set inputs. Each feature set is based on
measurements of a particular packet flow. The traffic classi-
fier 100 comprises a set of binary classifiers 104, a set of
calibrators 106 and a traffic class predictor 110.

Each binary classifier 104 is trained to generate an output
score for each feature set input. In some embodiments, the
number of binary classifiers 104 is equal to a number of
classes of traffic in the traffic classification system. Other
embodiments may have more or fewer classifiers relative to
the number of classes. The binary classifiers 104 are config-
ured to operate in parallel, each configured to receive the
same feature set as input. As will be described in greater detail
below, the output of the classifier 104 is not, in itself, a binary
result. However, the complete process described below
adjusts the various factors with a threshold applied to the
score to end up with a binary classification. That is, does the
data being analyzed belong to the application class or not.

Each calibrator 106 is associated with and coupled to one
of the binary classifiers 104. Thus, each calibrator 106 is
associated with the same traffic class as its associated binary
classifier 104. Each calibrator 106 is trained to translate the
output score received from its associated binary classifier 104
into an estimated class probability value using a fitted logistic
curve. The estimated class probability value indicates a like-
lihood that the packet flow on which the output score is based
belongs to the traffic class associated with the calibrator 106.

The traffic class predictor 110 is communicatively coupled
with the set of calibrators 106. The traffic class predictor 110
is configured to determine a predicted traffic class based on
the estimated class probability values received from the cali-
brators 106. The predicted traffic class is the one of the plu-
rality of traffic classes to which the traffic class predictor 110
predicts that the packet flow belongs. In some embodiments,
the traffic class predictor 110 is configured to determine the
predicted traffic class by selecting the traffic class associated
with the calibrator 106 associated with a highest of the esti-
mated class probability value received from the set of cali-
brators 106. In other embodiments, a different criterion is
used to determine the predicted traffic class.

The binary classifiers 104, the calibrators 106 and the
traffic class predictor 110 are software modules which, in
some embodiments are all hosted on a single server, but in
most embodiments are hosted in a plurality of servers. A
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typical embodiment would have each binary classifier 104
and its associated calibrator 106 on a different server.

Classifier Training System

FIG. 1 illustrates the operation of the traffic classifier 100
where the binary classifiers 104 and calibrators 106 have
already been trained. FIG. 2 is a block diagram showing a
classifier/calibrator training system 120. The training system
120 comprises a training data sampler 114, a training data
classifier 118, a training database 116, a set of classifier
trainers 108, and the set of binary classifiers 104 of the traffic
classifier 100 from FIG. 1. FIG. 2 also illustrates a calibrator
data sampler 122 and a calibrator data classifier 124. As will
be discussed in greater detail below, the calibrator data sam-
pler 122 and the calibrator classifier 124 are used by a cali-
brator trainer 110 in training the calibrators 106. The training
system 120 is configured to train the set of binary classifiers
104 and calibrators 160 of the traffic classifier 100. Once
training is complete, the trained traffic classifier 100 can be
place into operation, receiving flow records from the network
102 and making traffic class predictions in real-time or near
real-time (see FIG. 1). In some embodiments, training a
binary classifier 104 includes generating a new software mod-
ule where none previously existed. In other embodiments, the
classifier trainer 108 operates on an existing binary classifier
104 to improve the performance of the binary classifier 104.
The components of the classifier training system 120 are
briefly described next, but details of the operation of the
classifier training system 120 will be discussed later herein.

The training data sampler 114 is communicatively coupled
with the network 102. The training data sampler 114 is con-
figured to monitor traffic in the network 102 and generate
traffic information based on the traffic. The training data
sampler 114 is configured to select particular packets from the
traffic for generation of traffic information based on one of
several sampling methods. These methods may include flow
sampling and packet sampling, described further herein.

In an exemplary embodiment, the training data sampler
114 could randomly sample communication traffic from the
network 102. However, it has been determined that such
random sampling may be ineffective for training the classifi-
ers 104. In the example illustrated in FIG. 2, there are k
classifiers 104 to represent k flow classes that are possible on
the network 102. However, it is known that there is not an
equal distribution of flow classes in the network 102. For
example, the flow class represented by classifier 1 may be the
most common flow class on the network and carry a large
percentage of the traffic volume in the network 102. In con-
trast, the classifier k may represent a flow class that occurs
infrequently within the network 102. A random sample of
data in the network would fairly represent the percentages of
traffic that are designated by each of the flow classes, but may
not provide an adequate number of flow samples for the less
seldom used flow classes, such as the class k described in the
present example. To avoid this problem, the training data
sampler 114 operates in conjunction with the training classi-
fier 118 to select samples that provide a sufficient number of
examples for each of the flow classes 1-k. Thus, the trainer
classifier 118 uses highly selected data to provide an adequate
number of flow samples for the various classes. Because this
is not a random sampling, the probability distribution char-
acteristics of the classifier training data may be statistically
skewed. The calibrators 106 associated with each classifier
de-skew the results and provide a more accurate classification
process.
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As will be described in greater detail below, the calibrator
data sampler 122 randomly samples data from the network
102. The calibrator data classifier 124 analyzes each of the
flows in detail to properly identify the flow type in each of the
randomly collected samples. Thus, the training process illus-
trated in the functional block diagram of FIG. 2 occurs in two
stages. In the first stage, the highly selected data is used to
train the classifiers 104. In the second stage of the training
process, the trained classifier 104 work in conjunction with its
respective calibrator trainer 110 using randomly sampled data
to train the calibrators 106 and thus de-skew the results of the
classifiers 104. The resulting combination of trained classifier
104 and trained calibrator 106 provides a more accurate sta-
tistical distribution and thus more accurate flow identification
results.

The training data classifier 118 is communicatively
coupled with the training data sampler 114. The training data
classifier 114 is configured to generate a training data set
based on the traffic information generated by the training
sampler 114. The training data set generated by the training
data classifier 118 comprises a plurality of training flow sets.
Each training flow set has a feature set and an associated class
label. Each feature set comprises a set of flow features. Flow
features are values related to a traffic flow that can be deter-
mined by examining network and transport layer packet head-
ers, such as the destination port or the source IP address. Flow
features are discussed in further detail later herein. The train-
ing data classifier 118 is configured to generate a feature set
based on information extracted from a flow record. Some of
the features are pieces of information extracted unaltered
from the flow record. Other features are calculated values
based on the information extracted from the flow record.

The training data classifier 118 is configured to generate an
associated class label for each flow record. In one embodi-
ment, the training data classifier 118 generates the associated
class labels by performing deep packet inspection (DPI) of
data packets received from the network 102 associated with
the packet flows represented by the selected flow records. DPI
involves examining application information (layer 7) in the
packets. This process can be computationally intensive and
time consuming. The training data classifier 118 is configured
to store the flow records and associated data packets for later
processing.

The training database 116 is communicatively coupled
with the training data classifier 118. The training database
116 is configured to receive and store the training data set.

The classifier trainers 108 are communicatively coupled
with the training database 116. The set of classifier trainers
108 are configured to train the set of binary classifiers 104
using the training data set. Each classifier trainer 108 is con-
figured to receive a copy of the training data set from the
training database 116. The classifier trainers 108 use one of
several different training algorithms to train the binary clas-
sifiers 104. These algorithms are described in further detail
later herein. Each classifier trainer 108 is configured to run the
training data set on the respective trained binary classifier 104
to generate a set of output scores.

After the training of the classifiers 104 has been completed,
the training system 120 trains the calibrators 106 in a second
stage of the training process. In this stage, the data from the
calibrator data sampler 122, which is randomly selected, is
classified and accurately labeled as to the particular flow type
by the calibrator data classifier 124. The randomly sampled
data is then supplied to each of the classifiers 104. The output
of the classifiers 104 are fed to the respective calibrators 106
and calibrator trainers 110. The labels for the data flows, taken
along with the output of the classifiers are used to generate a
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reliability diagram indicative of the operation of the classifi-
ers 104 when presented with actual randomly sampled data.
The calibrator trainer 110 uses the reliability diagrams in a
process to train the calibrators 106. Thus, the trained calibra-
tors 106 improve the reliability of the classifiers 104 and
provide a more accurate result than would be provided by the
trained classifiers alone.

The calibration trainers 110 are each configured to create a
reliability diagram based on the respective set of output
scores and the plurality of class labels from the training data
set, then fit the reliability diagram to a logistic curve. This
fitted logistic curve is the main part of the respective calibra-
tor 106 and is used to translate the output score of the asso-
ciated binary classifier 104 into an estimated class probability
value. This calibrator training process is explained in more
detail in a discussion later herein of FIGS. 4 and 5.

The training data sampler 114, the training data classifier
118, the training database 116, the set of classifier trainers
108, the calibrator data sampler 122, the calibrator data clas-
sifier 124, and the set of calibrator trainers 110 are software
modules which in some embodiments are all hosted on a
single server, but in most embodiments are hosted in a plu-
rality of servers. In a typical embodiment, each classifier
trainer 108 and its associated calibrator trainer 110 are on the
same server, but separate from the other modules of the clas-
sifier training system 120. In such embodiments, the training
data sampler 114, the training data classifier 118, the training
database 116, the calibrator data sampler 122, and calibrator
data classifier 124 are each hosted on individual servers. In
some embodiments, once the training is complete, the trained
binary classifiers 104 and associated calibrators 108 are
extracted from the servers hosting the classifier training sys-
tem 120 and loaded onto a different set of servers, before
classifying live traffic. In other embodiments, the trained
binary classifiers 104 and associated calibrators 106 remain
on the servers hosting their respective classifier trainers 108
and associated calibrator trainers 110 and classify live traffic
on those machines.

Training a Traffic Classifier

FIG. 8 is a flow diagram showing a method for training a
general traffic classifier 100. This method trains a traffic clas-
sifier such as the traffic classifier 100 shown in FIG. 1 using
the classifier training system 120 shown in FIG. 2.

Generating a Training Data Set

In step 200, the classifier training system 120 generates a
training data set. The training data set comprises a plurality of
selected training flow sets. Each training flow set comprises
one ofa plurality of training feature sets and an associated one
of a plurality of class labels. Each training feature set and
associated class label is based on measurements of one of a
plurality of training packet flows. The associated class label
identifies to which one of'a plurality of traffic classes each one
of the plurality of training packet flows belongs.

Each feature set comprises key values of the associated
packet flow—the standard 5-tuple of IP protocol, source and
destination IP addresses, and source and destination TCP/
UDRP ports. Each feature set has packet and byte counts, time
of the first and last observed packet and other flow level
features listed in Table 1. The market features (*) in Table 1
are not directly measured from the packet flows, but are
computed from quantities that are directly measured.
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TABLE 1
Name Type
lowsreport numeric
lowdstport numeric
highsreport numeric
highdstport numeric
duration numeric
packet numeric
byte numeric
Mean_packet_size (mps) numeric
Mean_packet_rate (mpr) numeric
tacpflags text
tos numeric
toscount numeric
numtosbytes numeric
srcinnet {0,1}
dstinnet {0,1}

The duration, packet and byte fields represent the length of
the flow, number of packets and bytes in the flow, respec-
tively. Mean_packet_size, and mean_packet_rate stand for
the average bytes per packet and the average packet arrival
time in seconds. The tcpflag feature combines all possible
Tepflags in the packets. TOS (type of service) related features
tos, toscount and numtosbytes are the predominant TOS byte,
the number of packets that were marked with tos, and the
number of different tos bytes seen in a flow, respectively. The
lowsrcport, the lowdstport field, the highsrcport and the
highdstport have a particular usage. If the source or destina-
tion port is above 1024, the lowsrcport and lowdstport fields
are set to —1 and the highsrcport and highdstport fields records
the port numbers. Otherwise, the port numbers are recorded
in the lowsrcport and lowdstport fields and the highsrcport
and highdstport fields are set to —1. The srcinnet and dstinnet
field is set to 1 if the source or destination address is in the
network and set to 0 otherwise.

As mentioned above each feature set is associated with a
class label based on level-4 and level-7 application signatures
identified in the packet flow on which the feature set is based.
Each class label identifies one of a plurality of classes. For
example, applications generating traffic on the network 102
can be categorized into 12 TCP classes and 8 UDP classes, as
shown in Table 2.

TABLE 2

TCP/UDP Traffic Classes

Index TCP/UDP Class Description

1 TCP/UDP Business Middleware, VPN, etc.
2 TCP/UDP Chat Messengers, IRC, etc.
3 TCP/UDP DNS DNS Application
4  TCP/UDP FileSharing P2P Applications
5 TCP FTP FTP Application
6 TCP/UDP Games Everquest, WoW, Xbox, etc.
7 TCP Mail SMTP and POP
8 TCP/UDP Multimedia RTSP, MS-Streaming, etc.
9 TCP/UDP NetNews News

10  TCP Security Threat Worms and Trojans

11  TCP/UDP VoIP SIP Application

12 TCP Web HTTP Application

13 TCP/UDP Unknown Application is Unknown

Training the Binary Classifiers

In step 202, the classifier training system 120 trains a
plurality of binary classifiers 104 using the training data set.
As discussed before, each binary classifier 104 is associated
with one of the plurality of traffic classes. After training of the
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binary classifiers 104 is complete, each binary classifier 104
is configured to generate an output score based a feature set
input.

The goal for training a traffic classifier 100 with a plurality
of binary classifiers 104 may be formalized as follows. Let
F={(X;, 1), X5,¥2) - - ., (X, Y,)} be a training data set of n
flow sets. Each x,={x,, 1=j=m}, meaning x, is an m-dimen-
sional vector representing a feature set of m features, where
x,, stands for the j* feature in the i feature set. Feature X, can
be either categorical (e.g., tcpflag) or numerical (e.g., flow
duration). Eachy€{C, C,,...C,}, meaningy, is a class label
corresponding to feature set x, and identifying a traffic class
C, {1=g=k}, from the predefined k number of traffic classes
{C,, C,, . .. C,}. Training should result in an efficient yet
accurate traffic classifier 100 that can be used to attribute a
traffic class C, to any feature set x,.

Partitioning the multi-class traffic classifier 100 described
above into several simpler binary classifiers 104 ofters poten-
tial trade-offs between scalability and performance. The par-
tition strategy used in the embodiments herein is, for each of
the k classes, to train a binary classifier 104 with a one-vs.-rest
output that separates examples belonging to this class from all
others. Each binary classifier 104 is trained by considering
examples from the respective class as positive instances and
the rest as negative instances. The practical advantages of
using binary classifiers 104 are considerable. An algorithm to
train a classifier for k classes requires k times as many param-
eters, and at least k times more learning time, than a simple
binary classifier 104. Therefore, compared to a single multi-
class classifier, training k binary classifiers 104 can be both
cheaper and faster. A computer used for training requires up
to k times less memory. With parallelization on k computers,
one cantrain the k binary classifiers 104 at least k times faster.
Another advantage is simpler model analysis: one can clearly
tie the use of a feature to the discrimination of a given class.
This would not be the case for a single multi-class classifier.

Many machine learning algorithms can be used to train the
binary classifiers 104. However, the embodiments described
herein balance complexity and description power to fulfill the
requirements of both accuracy and possible interaction with
the human expert. These requirements are best met with algo-
rithms that minimize the number of features they use to per-
form the classification. This is typically the case for algo-
rithms that greedily add features and where one can apply
early stopping to control the number of features. Adaboost is
one such algorithm.

In some embodiments, Adaboost is used to train to train the
binary classifiers 104. Adaboost is a well known algorithm
that generates and linearly combines a set of features to create
an accurate binary classifier. In Adaboost, features may be
referred to as “weak learners.” In the present discussion, weak
learners may be considered as an exemplary form of a feature
that is analyzed in the classification process. Each generated
weak learner h, maps a feature set vector x onto the binary
decision, represented symbolically as h(x,) €{-1,1}. For-
mula (1) describes such a binary classifier 104 generating an
output score f(x;) where each weak learner h,(x) is gener-
ated at at” training iteration of a total of T training iterations,
and o, stands for a weight assigned to this weak learner h,(x).

T Equation 1
Fegi) = ) ahy(x)

t=1

The output score . (x,) is a real number, corresponding to
apositive instance when it exceeds some training threshold 8.
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The training threshold 8 is specific to class C. The Adaboost
process uses an initial threshold of zero. A better value is
obtained through the calibration process and may be substi-
tuted into equation 1. The weights a., are chosen to minimize
a classification error, defined as shown in Equation (2).

2,z #sign(Z,0h {x;)-0)) Equation 2

The value I is an indicator function: it is 1 if the input is true
and O otherwise. The equation (2) indicates the number of
times the binary prediction of whether the data is on the class
(i.e., the sign( . . . )) is not equal to z_1i, the actual binary class
membership.

Iteration output z, is +1 for positive examples, and -1 for
negative examples. That is, positive examples are those for
which data is in the class in question while negative examples
are data that are not in the class in question. The magnitude of
the output score . (x;) is proportional to the confidence of a
binary prediction of whether the flow associated with feature
set x, belongs to class C,.

Several different types of weak learners may be used. In
preferred embodiments, the weak learner is a decision stump,
which is the simplest weak learner. A decision stump applies
a single threshold decision over one of the flow features from
Table 1. Adaboost learns a sparse weight over a feature set
vector of very large dimension made of all possible weak
learners. That is, Adaboost uses the learning process in an
effort to construct a classifier in which a relatively small
number of weights a., in equation 2 have a non-zero value. In
other embodiments, the weak learner is a decision tree, apply-
ing a hierarchy of threshold decisions over different features.
While a boosted decision tree (a decision tree trained by
Adaboost) is still a linear classifier on decision tree features,
it has the representation power of a more complex non-linear
classifier that can handle conjunction of features.

One of the main limitations of Adaboost is that it may over
fit on noisy data. Adaboost does better on data with very little
noise, and this is the case for the traffic classification problem.

In other embodiments, the well known L1-regularized
Maximum Entropy (Maxent) algorithm is used to train the
binary classifiers 104. Maxent is another infinite ensemble
learner that shares some similarities with Adaboost. Maxent
classifier training aims to approximate the probability distri-
bution p(C, I x) for each class C, with the simplest possible
distribution, corresponding to maximum entropy. The spe-
cific Maxent algorithm greedily adds weak learners in a way
that is similar to Adaboost. Maxent converges to an optimum
that maximizes the conditional likelihood while minimizing
the L1 norm of the weight vector, and thus the number of
non-zero feature weights. This is desirable because each flow
feature can give rise to an infinite number of possible binary
stump features, one per possible threshold. Theory and
experiments show convergence even with very noisy data.

L1-regularization can be seen as the driving principle for
choosing suitable algorithms for training the binary classifi-
ers 104 (note: Adaboost implicitly applies a form of [.1-regu-
larization). Both Adaboost and L.1-regularized [.1-Maxent
can be contrasted with training algorithms that minimize the
Euclidean (I.2) norm of the weight vector, in particular, Sup-
port Vector Machines (SVMs). But such algorithms have
problems with numerical features that require a fine level of
thesholding, such as the port number in our problem. The
problem can be addressed in SVMs through the use of stump
kernels, although their use increases learning complexity.
This issue is discussed in Support Vector Machinery for Infi-
nite Ensemble Learning by H. T. Lin and L. Li, J. Mach.
Learn. Res. 9:285-312, 2009. Preliminary experiments on
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smaller flow classification problems show that SVMs with
stump kernels do not perform better than Adaboost.

Training the Calibrator

In step 204, the classifier training system 120 trains a
plurality of calibrators 106 using the randomly selected cali-
brator training data derived from the calibrator data sampler
122 (see FIG. 2) and the calibrator data classifier 124.

Training the plurality of calibrators 106 includes training
each calibrator 106 to have the ability to translate the output
score of the associated binary classifier 104 into an estimated
class probability value P(C,Ix,). The estimated class prob-
ability value P(C,Ix, ) indicates a posterior probability that the
packet flow on which the output score is based belongs to the
traffic class associated with the binary classifier 104 associ-
ated with the calibrator 106.

The k individual binary classifiers 104 are insufficient to
accurately classify a traffic flow associated with a given fea-
ture set x,. Each binary classifier 104 associated is with a
different class C, and generates an output score f,(x,) pro-
portional to the confidence that the flow associated with x,
belongs to the associated class C,. However, simply choosing
the class C, associated with the maximum output score T, (x,)
does not in general yield a solution that minimizes classifica-
tion error for the equivalent full multi-class problem. A sec-
ond stage is needed to calibrate the output score T (x,).
Logistic calibration is used to remap the output score f(x,)
to an estimated class probability value P(C,Ix,), the posterior
probability that a packet flow represented by flow set x,
belongs to traffic class C,. Deviations from optimality result-
ing from this decoupled two-stage approach do not cause any
significant increase in error in practice.

Calibration addresses two major problems. First, when
sampling is used to generate the training data set for classifier
training, the training data set will have a different distribution
from any live traffic data. Second, the output score does not
yield the true class probability value P(C,Ix,), and hence the
k output scores cannot be used directly to provide a true
multi-class prediction.

FIGS. 5A-5C are graphs of a true positive identification
rate for each designated type of traffic flow versus the score
generated by the classifier 104 for an unknown flow type.
Each of the binary classifiers 104 will generate an output
score that can have a positive or negative value. To generate
the data for FIGS. 5A-5C, a labeled calibration flow set is
selected independent of the training set and the classifier 104
analyzes the selected calibration set. For each flow in the
calibration set, the classifier 104 will generate an output score
in the real space. All data flows in the calibration set are
portioned into N bins (N=100 in the experiments described
herein) according to the score associated with each flow. The
true positive rate of the flows is then computed in each bin.
FIGS. 5A-5C are essentially the true positive rate of the flows
in each bin versus the mean score value of the flows in the
same bin. The calibrator 106 learns the mapping between the
scores to the probabilities from these figures. During opera-
tion, the numerical output values generated by the binary
classifiers 104 are provided to the calibrators 106 to generate
the appropriate probability values from the scores provided
by the binary classifiers. These probabilities are then com-
bined to generate the multi-class classification results.

FIG. 4 is a flow chart showing details of a method for
training a calibrator 106. The calibration method is based on
an observation of the logistic relation between the output
scores from the binary classifiers 104 and the empirical class
probabilities. This can be visualized from the reliability dia-
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grams in FIGS. 5A-5C. Each reliability diagram corresponds
to the training results for a specific binary classifier 104
associated with a traffic class C,, where an x-axis represents
output score intervals, and a y-axis represents empirical class
probability values (true positive rate).

As discussed above, the classifiers 104 are trained prior to
the calibrator training process. In step 210 (see FIG. 4), the
trained binary classifier 104 generates set of output scores
using the calibrator training data derived from the calibrator.

In step 212, the calibrator trainer 110 divides the set of
output scores into a set of intervals of scores.

In step 214, the calibrator trainer 110 determines for each
interval, a total number of class labels associated with the
interval as well as a number of matching class labels associ-
ated the interval. The class labels associated the interval are
class labels associated with the same flow set as used to
generate any of the output scores in the interval. The matching
class labels identify the same traffic class associated with the
binary classifier 104.

In step 216, the calibrator trainer 110 calculates a set of
empirical class probability values. One empirical class prob-
ability value is calculated for each interval by dividing the
number of matching class labels associated with the interval
by the total number of class labels associated with the inter-
val.

In step 218, the calibrator trainer 110 creates a reliability
diagram by mapping the set of empirical class probability
values against the set of intervals.

In step 220, the calibrator trainer 110 fits the reliability
diagram to a logistic curve. For an ideal binary classifier 104,
the output scores match the true class probability value
P(C,Ix,) perfectly, so all the points in the associated reliability
diagram should be along a diagonal line. However, for the
non-ideal binary classifiers 104 used in these embodiments,
the points more closely follow a logistic curve. Let f,(x)
denote the predicted output score based on flow feature set x,
from a binary classifier 104 associated with traffic class C,.
Thelogistic relation can be expressed as shown in Equation 3:

1 Equation 3

PC ) —
el %) 1+6XP(—0/fcg(Xi)—ﬁ)

The parameters o and [} are computed based on the reli-
ability diagram and determined by fitting a logistic curve to
all the points on the reliability diagram.

Such logistic curves are also displayed in FIGS. 5A-5C for
various traffic classes.

In the process of computing . and f§, choosing the number
of'score intervals to construct the reliability diagram is impor-
tant. A large enough number of intervals are required to
accurately fit a logistic regression curve. However, too many
intervals will result in more outliers. Empirical studies indi-
cate that a number of intervals between 50 and 100 generally
provide satisfactory results.

Classifying Traffic in Real-Time

Once the set of binary classifiers 104 and associated cali-
brators have been trained, the traffic classifier 100 can be put
into operation classifying live traffic in the network 102. FIG.
6 is a flow chart showing a method for classifying traffic in the
network 102 (see FIG. 1).

In step 230, the flow record collector 112 obtains a flow
record based on a measurement of a packet flow in the net-
work 102 (see FIG. 1). Flow records are generated by routers
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or network monitoring devices and sent to the flow record
collector 112. Flow record collection is well known in the art
and need not be described in greater detail herein.

In step 232, the flow record collector 112 generates a fea-
ture set based on the flow record. In some embodiments, at
least a portion of the features are extracted directly from the
flow record. In some embodiments, at least a portion of the
features are calculated values base on information extracted
from the flow record. In most embodiments, this step is per-
formed by the flow record collector 112, but in other embodi-
ments is performed by a different device.

In step 234, the binary classifiers 104 generate a set of
output scores using the feature set as input for the plurality of
binary classifiers 104. The plurality of binary classifiers 104
are configured to operate in parallel, each binary classifier
104 associated with one of k traffic classes.

In step 236, the calibrators 106 generate a set of estimated
class probability values using the set of output scores as input
for the calibrators 106. Each calibrator 106 is associated with
one of the binary classifiers 104. Each calibrator 106 trans-
lates the output score of the associated classifier into an asso-
ciated one of the set of estimated class probability values
using a fitted logistic curve. Each estimated class probability
value indicates an estimated probability that the packet flow
on which the output score is based belongs to the traffic class
associated the respective binary classifier 104 and associated
calibrator 106.

In step 238, the traffic class predictor 110 attributes mem-
bership in one of the k traffic classes to the packet flow based
on the set of estimated class probability values. In most
embodiments, this entails nothing more than determining
which of the set of estimated class probability values has the
greatest value and attributing membership to the packet flow
in the traffic class associated with that greatest estimated class
probability value.

Training Using Flow and Packet Sampling

The training data sampler 114 (see FIGS. 2 and 3) uses flow
and packet sampling to limit the size of the training data set.
In one embodiment, the training data sampler 114 selects a
portion of the flow records generated at a uniform sampling
rate. In packet sampling, the training data sampler 114 selects
packets at a uniform sampling rate from a portion of the
packets not in packet flow selected for flow sampling. The
sampling decisions in flow and packet sampling do not
explicitly depend on the flow key values or other features.
Flow feature values are not modified by the operation of flow
and packet sampling. In some embodiments, the training data
sampler 114 uses one of two types of sampling: flow sampling
and packet sampling. In some embodiments, the training data
sampler 114 uses both types. In other embodiments, a differ-
ent type of sampling is used. In some embodiments, the
training data sampler 114 uses both types. In other embodi-
ments, a different type of sampling is used.

FIG. 7 is aflow diagram showing a method for the classifier
training system 120 to perform flow and packet sampling.
Steps 240-248 are an embodiment of flow sampling and steps
250-254 illustrate an embodiment of feature set generation.

In step 240, the training data sampler 114 detects flow
sampling candidate packets in the network 102. The training
data sampler 114 reads key values of packets traveling
through the network 102 at one or more points in the network
102. The flow sampling candidate packets are packets with
key values that have not been designated by the training data
sampler 144 as flow reporting ineligible.
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In step 242, the training data sampler 114 selects flow
sampling packets from the flow sampling candidate packets
based on a specified flow sampling rate. Any subsequent
packet with a key value matching a key value of one of the
selected flow sampling packets within a certain time period
causes the flow record associated with that key value to be
updated accordingly (i.e., updating packet and byte counts
and timing information). Flow sampling can be terminated by
both inactive and also active timeout at the end of a periodic
window. Flow records with matching key values in consecu-
tive windows are aggregated in post processing.

In step 244, the training data sampler 114 generates flow
sampling feature sets based on the flow sampling packets.

In step 246, the training data sampler 114 designates key
values associated with flow sampling candidate packets not
selected to be flow sampling packets as flow reporting ineli-
gible for a period of time.

In step 248, the training data sampler 114 designates key
values of flow sampling packets as flow reporting ineligible
while generating the respective flow sampling feature set.

In step 250, the training data sampler 114 selects packet
sampling packets at a packet sampling rate from the packets
not selected as flow sampling packets.

In step 252, the training data sampler 114 generates packet
sampling feature sets based on the packet sampling packets.

In step 254, the training data sampler 114 generates a
plurality of training feature sets by aggregating the flow sam-
pling feature sets and the packet sampling feature sets.

Training with Class Sampling

Classification accuracy increases with the size of the train-
ing data set. However, the binary classifiers 104 employed
come with scalability constraints that, under specific hard-
ware configurations, limit the number of flows that can be
used for training (e.g., 1 million flow sets for a binary BStump
classifier and only 100K flow sets for a binary BTree classi-
fier). Therefore, some form of sampling is desired to reduce
the size of the training data set. However, simple uniform
sampling across all traffic samples will yield few examples
from low volume classes, making it difficult to train binary
classifiers 104 for identifying such flows accurately.

A smarter strategy is class sampling (see FIGS. 3 and 9).
Class sampling includes generating a reduced training data
set for each single-class binary classifier by keeping all the
flow records belonging to that class and uniformly sampling
flows from other classes. However the number of flows in
high volume classes can still exceed hardware-imposed lim-
its. To overcome the problem of high volume classes, a
weighted threshold sampling strategy is used with the objec-
tive of creating a smaller but more balanced reduced training
data set. The weighted threshold sampling method includes
keeping all flows belonging to a class C, if a number of flows
IC,l inthe class C, is below a flow count threshold 6, butif the
number of flows |C,| is greater than the flow count threshold
0, performing simple random sampling on flow sets belong-
ing to C, with a sampling rate equal to the flow count thresh-
old 6 divided by the number of flows IC,l, thus yielding a
number of flows equal to the flow count threshold 8 on aver-
age. Although this procedure creates a more balanced reduced
training set, it also introduces bias since the distribution of
flows across application classes is different for the training
data set than for live traffic, leading to violation of the IID
assumption in machine learning algorithms. This problem
can be addressed through calibration in the manner described
above.
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FIG. 3 is a block diagram showing a reduced data classifier
training system 130. The reduced data classifier training sys-
tem 130 has all the components of the classifier training
system 120 and has in addition a training data reducer 128 and
a set of k reduced training data set databases 126. In some
embodiments, the reduced training data set databases 126 are
hosted on separate physical servers, but in other embodi-
ments, one or more of the reduced training data set databases
are hosted on the same physical server.

The training data reducer 128 is communicatively coupled
with the training database 116. The training data reducer 128
is configured to generate a reduced training data set for each
of the k traffic classes.

The reduced training data sets are communicatively
coupled with the training data reducers 128 and each of the k
reduced training data sets is communicatively coupled with
the binary classifier 104 that is associated with the same
traffic class. The reduced training data sets are each config-
ured to provide the associated reduced training set to the
respective binary classifier 104 associated with the same
class.

FIG. 9 is a flow chart showing a method of training using
reduced training data sets.

In step 260, the reduced classifier training system 130
performs the step of generating a training data set. This step is
essentially identical to step 200 discussed above.

In step 262, the reduced classifier training system 130
performs the step of generating a set of reduced training data
sets. Bach reduced training data set is a portion of the training
data set from step 260. Each reduced training data set is stored
in a separate reduced training data base 126. In some embodi-
ments, the number of reduced training data sets generated is
equal to the number of traffic classes k and each reduced
training data set is associated with one of the traffic classes. In
some embodiments, generating the reduced training data sets
is performed by generating a matching portion and a non-
matching portion of the training data set for each of the
plurality of traffic classes. The matching portion of the train-
ing data set has training flow sets from the training data set
that have class labels matching the traffic class. The non-
matching portion has flow sets uniformly sampled from the
training data set that do not have class labels matching the
traffic class. In some embodiments, all flow sets of the match-
ing portion of the training data set are incorporated into the
reduced training data set if a count of matching flow sets is
less than a flow count threshold. In some embodiments, a
sampled portion of the flow sets of the matching portion of the
training data set are incorporated into the reduced training
data set if the count of matching flow sets is greater than or
equal to the flow count threshold.

In step 264, the reduced classifier training system 130
performs the step of training the set of binary classifiers 104
using the reduced training data sets. Training each binary
classifier 104 uses the reduced training data set associated
with the same traffic class as the binary classifier 104. Other
than using the reduced training data sets, this step is the same
as step 202 described above.

In step 266, the reduced classifier training system 130
performs the step of training the set of calibrators 106. As
discussed above, the non-random sampling of training data
used to train the classifiers 104 may skew the results of the
classification process. The calibrators 110 compensate from
any skewing that may occur. The data used during the cali-
brators is randomly selected data provided by the calibrator
data sampler 122 (see FIG. 3) and classified by the calibrator
data classifier 124. The randomly selected data is fed in to
each of the classifiers 104. The output of the classifiers is fed
to the respective calibrators 106 and the respective calibrator
trainers 110. The calibration training process is conducted in
the manner described above. Thus, the classifier training pro-
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cess utilizes reduced training sets, while the calibrator train-
ing process is conducted in the normal fashion. The use of the
calibrators 106 in conjunction with the classifiers 104 pro-
duces more accurate results than use of the classifiers alone.

The foregoing described embodiments depict different
components contained within, or connected with, different
other components. It is to be understood that such depicted
architectures are merely exemplary, and that in fact many
other architectures can be implemented which achieve the
same functionality. In a conceptual sense, any arrangement of
components to achieve the same functionality is effectively
“associated” such that the desired functionality is achieved.
Hence, any two components herein combined to achieve a
particular functionality can be seen as “associated with” each
other such that the desired functionality is achieved, irrespec-
tive of architectures or intermedial components. Likewise,
any two components so associated can also be viewed as
being “operably connected”, or “operably coupled”, to each
other to achieve the desired functionality.

While particular embodiments of the present invention
have been shown and described, it will be obvious to those
skilled in the art that, based upon the teachings herein,
changes and modifications may be made without departing
from this invention and its broader aspects and, therefore, the
appended claims are to encompass within their scope all such
changes and modifications as are within the true spirit and
scope of this invention. Furthermore, it is to be understood
that the invention is solely defined by the appended claims. It
will be understood by those within the art that, in general,
terms used herein, and especially in the appended claims
(e.g., bodies of the appended claims) are generally intended
as “open” terms (e.g., the term “including” should be inter-
preted as “including but not limited to,” the term “having”
should be interpreted as “having at least,” the term “includes”
should be interpreted as “includes but is not limited to,” etc.).
It will be further understood by those within the art that if a
specific number of an introduced claim recitation is intended,
such an intent will be explicitly recited in the claim, and in the
absence of such recitation no such intent is present. For
example, as an aid to understanding, the following appended
claims may containusage of the introductory phrases “at least
one” and “one or more” to introduce claim recitations. How-
ever, the use of such phrases should not be construed to imply
that the introduction of a claim recitation by the indefinite
articles “a” or “an” limits any particular claim containing
such introduced claim recitation to inventions containing
only one such recitation, even when the same claim includes
the introductory phrases “one or more” or “at least one” and
indefinite articles such as “a” or “an” (e.g., “a” and/or “an”
should typically be interpreted to mean “at least one” or “one
or more”); the same holds true for the use of definite articles
used to introduce claim recitations. In addition, even if a,
specific number of an introduced claim recitation is explicitly
recited, those skilled in the art will recognize that such reci-
tation should typically be interpreted to mean at least the
recited number (e.g., the bare recitation of “two recitations,”
without other modifiers, typically means at least two recita-
tions, or two or more recitations).

Accordingly, the invention is not limited except as by the
appended claims.

The invention claimed is:

1. A method of training a traffic classifier, the method
comprising:

generating, by a server, a training data set comprising a

plurality of training flow sets, each training flow set
comprising one of a plurality of training feature sets and
an associated one of a plurality of class labels, each
training feature set and associated class label based on
measurements of one of a plurality of training packet
flows, the associated class label identifying to which one



US 9,349,102 B2

17

of'a plurality of traffic classes the one of the plurality of
training packet flows belongs;
training, by the server, a plurality of binary classifiers using
a reduced training data set that is generated from the
training data set, each binary classifier associated with
one of the plurality of traffic classes, each binary classi-
fier configured to generate an output score based on the
reduced training data set and based on measurements of
apacket flow, wherein for each of the plurality of binary
classifiers the reduced training data set comprises all
training features sets associated with the one of the plu-
rality of traffic classes that are contained in the training
data set and training packet flows associated with other
traffic classes of the plurality of traffic classes that are
uniformly sampled from the training data set; and

training, by the server, a plurality of calibrators using the
training data set, wherein each calibrator is associated
with one of the plurality of binary classifiers, wherein
the training the plurality of calibrators comprises train-
ing each of the plurality of calibrators to translate the
output score of the associated binary classifier into an
estimated class probability value, the estimated class
probability value indicating a probability that the packet
flow on which the output score is based belongs to the
traffic class associated with the binary classifier associ-
ated with the calibrator.

2. The method of claim 1, wherein the training each of the
plurality of calibrators further comprises, for each calibrator:

generating a set of output scores based on the plurality of

training feature sets using the binary classifier associ-
ated with the calibrator;

creating a reliability diagram based on the set of output

scores and based on a set of empirical class probability
values, the set of empirical class probability values
based on the plurality of class labels; and

fitting the reliability diagram to a logistic curve.

3. The method of claim 1, wherein the generating the
training data set further comprises using flow sampling and
packet sampling to create the plurality of training feature sets.

4. The method of claim 1, wherein the training the plurality
of'binary classifiers further comprises training the plurality of
binary classifiers with an adaboost algorithm.

5. The method of claim 1, wherein the training the plurality
of'binary classifiers further comprises training the plurality of
binary classifiers with a maxent algorithm.

6. The method of claim 1, wherein the training the plurality
of binary classifiers further comprises training a plurality of
binary classifiers using decision stumps.

7. The method of claim 1, wherein the generating the
training data set further comprises:

generating the plurality of feature sets based on measure-

ments of flow layer information in the plurality of train-
ing packet flows; and

generating the plurality of class labels based on measure-

ments of application layer information in the plurality of
training packet flows.

8. A non-transitory computer-readable medium storing a
plurality of instructions, which, when executed by a server,
cause the server to perform operations, the operations com-
prising:

generating a training data set comprising a plurality of

training flow sets, each training flow set comprising one
of a plurality of training feature sets and an associated
one of a plurality of class labels, each training feature set
and associated class label based on measurements of one
of a plurality of training packet flows, the associated
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class label identifying to which one of a plurality of
traffic classes the one of the plurality of training packet
flows belongs;

training a plurality of binary classifiers using a reduced
training data set that is generated from the training data
set, each binary classifier associated with one of the
plurality of traffic classes, each binary classifier config-
ured to generate an output score based on the reduced
training data set and based on measurements of a packet
flow, wherein for each of the plurality of binary classi-
fiers the reduced training data set comprises all training
features sets associated with the one of the plurality of
traffic classes that are contained in the training data set
and training packet flows associated with other traffic
classes of the plurality of traffic classes that are uni-
formly sampled from the training data set; and

training a plurality of calibrators using the training data set,
wherein each calibrator is associated with one of the
plurality of binary classifiers, wherein the training the
plurality of calibrators comprises training each of the
plurality of calibrators to translate the output score of the
associated binary classifier into an estimated class prob-
ability value, the estimated class probability value indi-
cating a probability that the packet flow on which the
output score is based belongs to the traffic class associ-
ated with the binary classifier associated with the cali-
brator.

9. The non-transitory computer-readable medium of claim
8, wherein the training each of the plurality of calibrators
further comprises, for each calibrator:

generating a set of output scores based on the plurality of
training feature sets using the binary classifier associ-
ated with the calibrator;

creating a reliability diagram based on the set of output
scores and based on a set of empirical class probability
values, the set of empirical class probability values
based on the plurality of class labels; and

fitting the reliability diagram to a logistic curve.

10. The non-transitory computer-readable medium of
claim 8, wherein the generating the training data set further
comprises using flow sampling and packet sampling to create
the plurality of training feature sets.

11. The non-transitory computer-readable medium of
claim 8, wherein the training the plurality of binary classifiers
further comprises training the plurality of binary classifiers
with an adaboost algorithm.

12. The non-transitory computer-readable medium of
claim 8, wherein the training the plurality of binary classifiers
further comprises training the plurality of binary classifiers
with a maxent algorithm.

13. The non-transitory computer-readable medium of
claim 8, wherein the training the plurality of binary classifiers
further comprises training a plurality of binary classifiers
using decision stumps.

14. The non-transitory computer-readable medium of
claim 8, wherein the generating the training data set further
comprises:

generating the plurality of feature sets based on measure-
ments of flow layer information in the plurality of train-
ing packet flows; and

generating the plurality of class labels based on measure-
ments of application layer information in the plurality of
training packet flows.
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15. An apparatus, comprising:

a processor of a server; and

a computer-readable medium storing a plurality of instruc-
tions which, when executed by the processor, cause the
processor to perform operations, the operations com-
prising:
generating a training data set comprising a plurality of

training flow sets, each training flow set comprising
one of a plurality of training feature sets and an asso-
ciated one of a plurality of class labels, each training
feature set and associated class label based on mea-
surements of one of a plurality of training packet
flows, the associated class label identifying to which
one of a plurality of traffic classes the one of the
plurality of training packet flows belongs;

training a plurality of binary classifiers using a reduced

training data set that is generated from the training
data set, each binary classifier associated with one of
the plurality of traffic classes, each binary classifier
configured to generate an output score based on one
the reduced training data set and based on measure-
ments of a packet flow, wherein for each of the plu-
rality of binary classifiers the reduced training data set
comprises all training features sets associated with the
one of the plurality of traffic classes that are contained
in the training data set and training packet flows asso-
ciated with other traffic classes of the plurality of
traffic classes that are uniformly sampled from the
training data set; and

training a plurality of calibrators using the training data

set, wherein each calibrator is associated with one of
the plurality of binary classifiers, wherein the training
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the plurality of calibrators comprises training each of
the plurality of calibrators to translate the output score
of the associated binary classifier into an estimated
class probability value, the estimated class probabil-
ity value indicating a probability that the packet flow
on which the output score is based belongs to the
traffic class associated with the binary classifier asso-

ciated with the calibrator.

16. The apparatus of claim 15, wherein the training each of
the plurality of calibrators further comprises, for each cali-
brator:

generating a set of output scores based on the plurality of

training feature sets using the binary classifier associ-
ated with the calibrator;

creating a reliability diagram based on the set of output

scores and based on a set of empirical class probability
values, the set of empirical class probability values
based on the plurality of class labels; and

fitting the reliability diagram to a logistic curve.

17. The apparatus of claim 15, wherein the generating the
training data set further comprises using flow sampling and
packet sampling to create the plurality of training feature sets.

18. The apparatus of claim 15, wherein the training the
plurality of binary classifiers further comprises training the
plurality of binary classifiers with an adaboost algorithm.

19. The apparatus of claim 15, wherein the training the
plurality of binary classifiers further comprises training the
plurality of binary classifiers with a maxent algorithm.

20. The apparatus of claim 15, wherein the training the
plurality of binary classifiers further comprises training a
plurality of binary classifiers using decision stumps.
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